HYPERION R
MODEL 982
User Maintenance Manual/Handbook

Isothermal Technology Limited, Pine Grove, Southport, PR9 9AG, England
Tel: +44 (0)1704 543830 Fax: +44 (0)1704 544799 Internet: www.isotech.co.uk E-mail: info@isotech.co.uk

The company is always willing to give technical advice and assistance where appropriate. Equally, because of the programme of continual development and improvement we reserve the right to amend or alter characteristics and design without prior notice. This publication is for information only.
GUARANTEE

This instrument has been manufactured to exacting standards and is guaranteed for twelve months against electrical break-down or mechanical failure caused through defective material or workmanship, provided the failure is not the result of misuse. In the event of failure covered by this guarantee, the instrument must be returned, carriage paid, to the supplier for examination and will be replaced or repaired at our option.

FRAGILE CERAMIC AND/OR GLASS PARTS ARE NOT COVERED BY THIS GUARANTEE

INTERFERENCE WITH OR FAILURE TO PROPERLY MAINTAIN THIS INSTRUMENT MAY INVALIDATE THIS GUARANTEE

RECOMMENDATION

The life of your ISOTECH Instrument will be prolonged if regular maintenance and cleaning to remove general dust and debris is carried out.

We recommend that this instrument to be re-calibrated annually.

ISOTHERMAL TECHNOLOGY LTD.
PINE GROVE, SOUTHPORT
PR9 9AG, ENGLAND

TEL: +44 (0) 1704 543830/544611
FAX: +44 (0)1704) 544799

The company is always willing to give technical advice and assistance where appropriate. Equally, because of the programme of continual development and improvement we reserve the right to amend or alter characteristics and design without prior notice. This publication is for information only.
EMC INFORMATION

This product meets the requirements of the European Directive on Electromagnetic Compatibility (EMC) 89/336/EEC as amended by EC Directive 92/31/EEC and the European Low Voltage Directive 73/25/EEC, amended by 93/68/EEC. To ensure emission compliance please ensure that any serial communications connecting leads are fully screened.

The product meets the susceptibility requirements of EN 50082-1, criterion B.

<table>
<thead>
<tr>
<th>Symbol Identification</th>
<th>Publication</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>⚠️</td>
<td>ISO3864</td>
<td>Caution (refer to handbook)</td>
</tr>
<tr>
<td>⚠️</td>
<td>IEC 417</td>
<td>Caution, Hot Surface</td>
</tr>
</tbody>
</table>

ELECTRICAL SAFETY

This equipment must be correctly earthed.

This equipment is a Class 1 Appliance. A protective earth is used to ensure the conductive parts cannot become live in the event of a failure of the insulation.

The protective conductor of the flexible mains cable which is colored green/yellow MUST be connected to a suitable earth.

The Blue conductor should be connected to Neutral and the Brown conductor to Live (Line).

Warning: Internal mains voltage hazard. Do not remove the panels.

There are no user serviceable parts inside. Contact your nearest Isotech agent for repair.

Voltage transients on the supply must not exceed 2.5kV.

Conductive pollution, e.g. Carbon dust, must be excluded from the apparatus. EN61010 pollution degree 2.

The apparatus has two input connectors for temperature sensors, see panel layout and functions in this manual. These inputs are only suitable for either a thermocouple of resistance thermometer. No other sensor or signal maybe connected.

ENVIRONMENTAL RATINGS

Operating Temperature: 0-50°C

Relative Humidity: 5-95%, non condensing
HEALTH AND SAFETY INSTRUCTIONS

1. Read this entire handbook before use.
2. Wear appropriate protective clothing.
3. Operators of this equipment should be adequately trained in the handling of hot and cold items and liquids.
4. Do not use the apparatus for jobs other than those for which it was designed, i.e. the calibration of thermometers.
5. Do not handle the apparatus when it has hot (or cold), unless wearing the appropriate protective clothing and having the necessary training.
6. Do not drill, modify or otherwise change the shape of the apparatus.
7. Do not dismantle the apparatus.
8. Do not use the apparatus outside its recommended temperature range.
9. If cased, do not return the apparatus to its carrying case until the unit has cooled.
10. There are no user serviceable parts inside. Contact your nearest Isotech agent for repair.
11. Ensure materials, especially flammable materials are kept away from hot parts of the apparatus, to prevent fire risk.
12. Ensure adequate ventilation when using oils at high temperatures.
CAUTIONARY NOTE

ISOTECH PRODUCTS ARE INTENDED FOR USE BY TECHNICALLY TRAINED AND COMPETENT PERSONNEL FAMILIAR WITH GOOD MEASUREMENT PRACTICES.

IT IS EXPECTED THAT PERSONNEL USING THIS EQUIPMENT WILL BE COMPETENT WITH THE MANAGEMENT OF APPARATUS WHICH MAY BE POWERED OR UNDER EXTREMES OF TEMPERATURE, AND ARE ABLE TO APPRECIATE THE HAZARDS WHICH MAY BE ASSOCIATED WITH, AND THE PRECAUTIONS TO BE TAKEN WITH, SUCH EQUIPMENT.
UNPACKING AND INITIAL INSPECTION

Our Packing Department uses custom designed packaging to send out your unit, but as accidents can still happen in transit, you are advised, after unpacking the unit to inspect it for any sign of shipping damage. Confirm that your delivery is in accordance with the packing note. If you find any damage or that part of the delivery is missing notify us or our agent, and the carrier immediately. Keep the packing, if damaged, for possible inspection by an insurance assessor.

ELECTRICITY SUPPLY

Before connecting to the electricity supply please familiarise yourself with the parts of the handbook relevant to your model.

Your unit's supply voltage requirement is specified on a plate on the instrument along with the serial number. All Hyperion R instruments will work on an electricity supply frequency of 50Hz or 60Hz.

The unit's electricity supply cable is colour-coded as follows:

<table>
<thead>
<tr>
<th>COLOUR</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green/yellow</td>
<td>Earth (Ground)</td>
</tr>
<tr>
<td>Brown</td>
<td>Live (line)</td>
</tr>
<tr>
<td>Blue</td>
<td>Neutral</td>
</tr>
</tbody>
</table>

Please ensure that your unit is correctly connected to the electricity supply.

If at any time the fuse needs to be replaced or examined ensure that the Hyperion is removed from the electricity supply prior to removing or replacing the fuse.
INTRODUCTION

The Hyperion R has a large cavity designed for use as a black body whose temperature may be set over the range -10 to 80°C at an ambient of 20°C.

The cavity is 50mm diameter by 150mm deep. The bottom is not flat but machined to have a 120° cone, see page 23.

A pocket is provided for an external thermometer which is used to measure the temperature of the source. The reading from this thermometer should be compared with the pyrometer under test if the greatest precision is to be realised.

OPERATION

The metal block, in which the cavity has been machined, has solid state heat pumps attached which are used to heat or cool the block. These heat pumps or Peltier modules allow temperatures below as well as above ambient to be realised. A platinum resistance thermometer located in the block senses the temperature. The control system also includes logic and switching for the heat pump’s DC power supply.

The temperature of the block is set by using the `UP' and `DOWN' keys of the temperature controller. The lower display shows the target temperature or setpoint.

The heat removed from the block is dissipated into the forced air cooled heatsinks. It is important that the air inlet and outlets of the Hyperion R are not obstructed.

For best results the temperature indicated on the controller should not be used for the cavity temperature. A measurement system independent to the control loop should be used.

A 3 wire platinum resistance thermometer may be connected.

The temperature difference between this pocket and the target area of the cavity has been determined to be less than 0.5°C.

It is this measurement system that Isotech can calibrate and UKAS certify.
OPERATING THE CONTROLLER

FRONT PANEL LAYOUT

THE TEMPERATURE CONTROLLER

The controller has a dual display, the upper display indicates the nominal block temperature, and the lower display indicates the desired temperature or setpoint.

ALTERING THE SETPOINT

To change the setpoint of the controller simply use the UP and DOWN keys to raise and lower the setpoint to the required value. The lower display changes to indicate the new setpoint.

ADVANCED CONTROLLER FEATURES

Setpoint Ramp Rate

By default the Dry Blocks are configured to heat and cool as quickly as possible. There may be some calibration applications where it is advantageous to limit the heating or cooling rate.

An example might be when testing bimetallic thermostats; by forcing the Dry Block to heat at a controlled rate it is easier to determine the temperature at which the thermostat changes state.

The Dry Block can have its heating rate limited with the Setpoint Ramp Rate feature. This feature is accessed from the Scroll key. Depress the key until the display shows,

SP.RAT

The upper display will show the current value, and is adjustable from OFF to 999.9. The units are °C/min and are adjustable via the UP/DOWN keys.
When the SP.RAT is active the lower setpoint display will now automatically update with the current value, known as the working setpoint. The setpoint can be seen by pressing either the UP and DOWN key.

The Setpoint ramp rate operates when the bath is heating and cooling.

Instrument Address

The controller has a configurable "address" which is used for PC communications. Each instrument has an address; this allows several instruments to be connected in parallel on the same communications bus. The default value is 1. This address would only need to be changed if more than one Dry Block is connected to the same PC port.

To check the Address value press the scroll key until the lower display indicates,

ADDR

The upper display will show the current value that can be modified with the UP and DOWN keys.

MONITORING THE CONTROLLER STATUS

A row of beacons indicate the controllers status as follows,

<table>
<thead>
<tr>
<th>OP1</th>
<th>Heat Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>OP2</td>
<td>Cool Output (only for models which operate below 0°C)</td>
</tr>
<tr>
<td>REM</td>
<td>This beacon indicates activity on the PC interface</td>
</tr>
</tbody>
</table>

For models fitted with cooling, the lower display will alternate between the setpoint and the message, cooling to temperature. It will automatically switch off when the temperature is within 5°C of the setpoint.

Units

Momentary pressing of the Scroll key will show the controller units °C or °F.
THE TEMPERATURE INDICATOR

The site models include an electronic temperature indicator. The indicator can be configured for the desired sensor type, and for custom calibration data. The customer calibration data can be set ON or OFF.

Setting the Input Type

A 100 Ohm resistance thermometer can be connected to the PRT Connector or a thermocouple may be connected to the miniature TC Connector.

Ensure that only a PRT or a TC is connected at any one time. If a PRT and TC are connected simultaneously the indicator will read in error.

Check that any sensor placed into the equipment is suitable for the temperature range. Sensors can be damaged if taken outside their normal operating limits.

The desired sensor type is easily set, press the Scroll key until the lower display indicates,

\[\text{In.Typ}\]

The upper display will show the current set sensor type,

\[
\begin{align*}
J.tc & : J \text{ thermocouple} \\
K.tc & : K \text{ thermocouple} \\
L.tc & : L \text{ thermocouple} \\
r.tc & : R \text{ thermocouple (Pt/Pt13\%Rh)} \\
b.tc & : B \text{ thermocouple (Pt30\%Rh/Pt6\%Rh)} \\
n.tc & : N \text{ thermocouple} \\
t.tc & : T \text{ thermocouple} \\
S.tc & : S \text{ thermocouple (Pt/Pt10\%Rh)} \\
PL.2 & : PL 2 \text{ thermocouple} \\
rtd & : 100 \text{ Ohm platinum resistance thermometer.} \\
T012 & : E \text{ thermocouple}
\end{align*}
\]

Again the value can be modified with the UP and DOWN keys.

ENABLING/DISABLING CUSTOM CALIBRATION

Custom calibration allows the indicator to be programmed to suit a particular temperature sensor. This allows the indicator to automatically show the true temperature, without having to manually apply a correction.

When the Custom or User Calibration is active the indicator will show the REM beacon lit continuously. The use of User calibration can make a significant difference to the accuracy of the instrument, and this REM beacon provides a clear and continuous indication of the calibration status. Isotech will configure and set user calibration when the Dry Block is ordered with a temperature sensor.

To alter the calibration status press the Scroll key until the lower display shows,
UCAL
The upper display will indicate either,

ON for user calibration

Or

OFF for factory calibration of the indicator

Use the UP and DOWN keys to toggle between the two values.

When calibrating an unknown sensor against a calibrated probe it may be necessary to switch the calibration off for the unknown, and on for the calibrated probe.

Instrument Address

Like the controller, the indicator has a configurable "address" which is used for PC communications. Each instrument has an address; this allows several instruments to be connected in parallel on the same communications bus. The default value is 2 (The controller defaults to 1). This address would only need to be changed if more than one Dry Block is connected to the same PC port.

To check the Address value press the scroll key until the lower display indicates,

ADDR

The upper display will show the current value that can be modified with the UP and DOWN keys.

MONITORING THE INDICATOR STATUS

For the indicator the REM beacon is lit continuously when the user calibration is active, the REM beacon flashes when the PC communications port is active.

Units

Momentary pressing of the Scroll key will show the controller units °C or °F.

ADVANCED INDICATOR OPERATION

The indicator can be configured with up to five custom calibration points; the points contain "data pairs". First the temperature (point) and secondly the Error (offset) at this temperature point. Isotech Dry Block calibration certificates will show the values to suit a particular sensor.

These values can be inspected, and modified with the following procedure,
Hold the PAGE key down until the display indicates,

CONF
GOTO

then

0
CODE

Set the Code to 2 with the UP key

The display reads,

CONF

Press the Page Key until the controller shows

CAL

Now use the Scroll key to examine the data pairs. The values Pnt 1 - Pnt 5 and Ofs 1 to Ofs 5 can be modified with the UP and DOWN keys.

To exit this mode hold the Page key until the top display shows,

CONF
GOTO

And then set the upper display to Lev 1. While in this mode take care not to modify other parameters.
CALIBRATION DATA EXAMPLE

A maximum of five points may be entered, shown as Pnt 1 to Pnt 5 for the temperature point and Ofs 1 to Ofs 5 for the offset values.

The Pnt values must be entered in ascending order.

Set a Pnt to a value lower than the previous point to disable it.

The indicator would be programmed with the following data:

<table>
<thead>
<tr>
<th>Pnt</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pnt 1</td>
<td>100</td>
</tr>
<tr>
<td>Pnt 2</td>
<td>300</td>
</tr>
<tr>
<td>Pnt 3</td>
<td>500</td>
</tr>
<tr>
<td>Pnt 4</td>
<td>-999</td>
</tr>
<tr>
<td>Pnt 5</td>
<td>-999</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ofs</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ofs 1</td>
<td>0.8</td>
</tr>
<tr>
<td>Ofs 2</td>
<td>1.1</td>
</tr>
<tr>
<td>Ofs 3</td>
<td>2.1</td>
</tr>
<tr>
<td>Ofs 4</td>
<td>0</td>
</tr>
<tr>
<td>Ofs 5</td>
<td>0</td>
</tr>
</tbody>
</table>

SELECTING INPUT TYPE

'HOME' display

20.0
20.0

Press scroll key until in typ appears

Press 'Up/Down' key to required input.
CONNECTING A CURRENT TRANSMITTER (UP TO 20MA)

The transmitter should be powered externally, a 2.49Ωm current sense resistor is fitted internally and this allows the indicator to read mA.

To scale the Linear input:

1. From the input type menu select “mV”.
2. The scaling can be configured in the CAL menu, accessed as described above.
3. Access the Input sub-menu by pressing the Page button.
4. Set the input type to mV.
5. Press again to enter the mv.hi value.
6. Press again to enter the mv.lo value.
7. Press again to enter the rng.hi value.
8. Press again to enter the rng.lo value.
9. To exit press Page and Scroll buttons together and select level 1 using the up/down buttons.

EXAMPLE: From the input menu iP set the mv.hi, mv.lo, rng.hi and rng.lo parameters to suit see table below:

| Linear Input Scaling - The next 4 parameters only appear if a linear input is chosen |
|----------------------------------|----------------------------------|----------------------------------|
| mv.lo Input value low | i.e. 4mA set 9.96 |
| mv.hi Input value high | i.e. 20mA set 49.8 |
| rng.lo Displayed reading low | 0°C |
| rng.hi Displayed reading high | 100°C |

E.g. 4-20mA = 0 to 100°C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>mv.lo</td>
<td>9.96 (mV)</td>
</tr>
<tr>
<td>mv.hi</td>
<td>49.8 (mV)</td>
</tr>
<tr>
<td>rng.lo</td>
<td>0 (°C)</td>
</tr>
<tr>
<td>rng.hi</td>
<td>100 (°C)</td>
</tr>
</tbody>
</table>

*2.49Ω resistor fitted internally (Pins 2 and 5).
Link Pins 3 and 5 for transmitter inputs.
Remove link for PRT's.
Socket Pins shown from Panel View.
USING THE PC INTERFACE

The PLUS models include an RS422 PC interface and a special converter cable that allows use with a standard RS232 port. When using the bath with an RS232 port it is essential that this converter cable is used. Replacement cables are available from Isotech, part number ISO-232-432. A further lead is available as an option, Part Number ISO-422-422 lead which permits up to 5 instruments to be daisy chained together.

The benefit of this approach is that a number of calibration baths may be connected together in a "daisy chain" configuration - and then linked to a single RS232, see diagram.

![Diagram of multiple calibration baths connected via RS232 and RS422 interfaces]

Note: The RS 422 standard specifies a maximum lead length of 1200M (4000ft). A true RS422 port will be required to realise such lead lengths. The Isotech conversion leads are suitable for maximum combined lead lengths of 10M that is adequate for most applications.

CONNECTIONS

For RS232 use simply connect the Isotech cable, a 9 to 25 pin converter is included to suit PCs with a 25 pin serial converter.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Tx+ A</td>
</tr>
<tr>
<td>5</td>
<td>Tx- B</td>
</tr>
<tr>
<td>8</td>
<td>Rx+ A</td>
</tr>
<tr>
<td>9</td>
<td>Rx- B</td>
</tr>
<tr>
<td>1</td>
<td>Common</td>
</tr>
</tbody>
</table>

USING THE INTERFACE

The models are supplied with Cal NotePad as standard. This easy to use package is compatible with MS Windows 9X, XP. A handbook for Cal NotePad can be found on the first installation disk in Adobe PDF format. If required a free Adobe PDF reader can be downloaded from, www.adobe.com.
CAL NOTEPAD

Cal Notepad can be used to log and display values from the Dry Blocks and an optional temperature indicator.

MINIMUM SYSTEM REQUIREMENTS

CNP requires Windows 9X, XP, a minimum of 5Mb of free hard drive space and free serial ports for the instruments to be connected.

DEVELOPMENT

CNP was developed by Isothermal Technology using LabVIEW from National Instruments.

License

Use of the Cal NotePad software program “CNP” is as granted in this license agreement. In using the CNP software the user “licensee” is agreeing to the terms of the license. You must read and understand the terms of this license before using CNP.

1. This license permits licensee to use CNP software on a single computer. The user may make copies for back up and archival purposes freely as long as the software is only ever in use on a single computer at any one time. Please enquire about multi-user licenses.

2. CNP is protected by international copyright laws and treaties. CNP must not be distributed to third parties.

3. CNP must not be reversed engineered, disassembled or de-compiled. Licensee may transfer the software to a third party provided that no copies or upgrades of CNP are retained.

4. It is the responsibility of the user to ensure the validity of all stored results and printed certificates. Isothermal Technology Ltd accept no responsibility for any errors caused by inappropriate use, incorrect set up or any other cause; including defects in the software.

5. Limited Warranty. Isothermal Technology warrants that CNP will perform substantially as described in this manual for a period of 90 days from receipt. Any distribution media will under normal used be guaranteed for a period of 90 days.

NO OTHER WARRANTIES, EXCEPT AS STATED ABOVE. The software and documentation is provided “as is” without warranty of any kind and no other warranties (either expressed or implied) are made with regard to CNP. Isothermal Technology does not warrant, guarantee or make any representations regarding the use or results of the use of the software or documentation and does not warrant that the operation of CNP will be error free.

In no event will Isothermal Technology, its employees, agents or other associated people be liable for direct, indirect, incidental or consequential damages, expenses, lost profits, business interruption, lost business information or other damages arising out the use or inability to use CNP. The license fee reflects this allocation of risk.

CNP is not designed for situations where the results can threaten or cause injury to humans.
INSTALLING CAL NOTEPAD

1. Insert Isotech Support CD into the CD drive.
2. Allow CD browser to open and install version of Cal NotePad required.
3. Follow the prompts which will install the application and necessary LabVIEW run time support files.
4. Should you ever need to uninstall the software then use the Add/Remove Programs option from the Control Panel.

STARTING CAL NOTEPAD

From a Standard Installation:

Click the START button

Highlight PROGRAMS

Select Isotech - Select Calpad

Protocol

The instruments use the "Modbus Protocol"

If required, e.g. for writing custom software the technical details are available from our website at, www.isotech.co.uk/refer.html
DIAGNOSTIC ALARMS

Diagnostic alarms indicate a possible fault within the controller or connected devices.

<table>
<thead>
<tr>
<th>Display shows</th>
<th>What it means</th>
<th>What to do about it</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.Conf</td>
<td>A change made to a parameter takes a finite time to be entered. If the power to the controller is turned off before the change has been entered then this alarm will occur.</td>
<td>Enter configuration mode then return to the required operating mode. It may be necessary to re-enter the parameter change since it will not have been entered in the previous configuration.</td>
</tr>
<tr>
<td></td>
<td>Do not turn the power off to the controller while Conf is flashing</td>
<td></td>
</tr>
<tr>
<td>E.CaL</td>
<td>Calibration error</td>
<td>Re-instate Factory calibration, refer to Isotech</td>
</tr>
<tr>
<td>E2.Er</td>
<td>EEPROM error</td>
<td>Return to Isotech for repair</td>
</tr>
<tr>
<td>EE.Er</td>
<td>Non-vol memory error</td>
<td>Note the error and contact Isotech.</td>
</tr>
<tr>
<td>E.Lin</td>
<td>Invalid input type. This refers to custom linearisation which may not have been applied correctly or may have been corrupted.</td>
<td>Go to the INPUT list in configuration level and set a valid thermocouple or input type</td>
</tr>
<tr>
<td>E.mod</td>
<td>IO1, OP2, or OP3 has been changed</td>
<td>If this has been field changed by the installation of a new board, enter config level, then exit back to operator level. If the message occurs at any other time return to factory for repair.</td>
</tr>
</tbody>
</table>

Additional Information:

1. If the input is too high HHHHH will be displayed.
2. If the input is too low LLLLL will be displayed.
INITIAL TESTING

This unit was tested before despatch to you but please check its operation as outlined below.

After connecting the Hyperion to the electricity supply, the temperature controller display will show the temperature of the block and the last set-point value.

Change the set-point to 50°C and observe that the block temperature rises and settles to this value.

Change the set-point to 0°C, this should cause the cooling to operate and bring the temperature to 0°C.

A probe connected to the indicator and placed into the cavity pocket should indicate the true cavity temperature.

Repeat the above to the limit of the units’ temperature range to ensure it works correctly.

Your unit should have performed as described above and can now be used for calibration.

If any problems or faults arise during these tests please contact us or our agents for help and advice.
MAINTENANCE

The only moving parts are the fans. They have sealed-for-life bearings. Depending on the environment in which it is used, periodic cleaning of them and the inside of the case is recommended. Cleaning may be accomplished by the use of a small dry paint brush.

The instrument should be periodically checked to ensure it is in good order both mechanically and electrically.

THE BASIC WORKINGS OF THE HYPERION R

The purpose of the Hyperion models is to provide an adjustable isothermal enclosure for calibration purposes.

The isothermal enclosure consists of an aluminium block.

The block is heated and cooled by two Peltier modules which are controlled, via a sensor in the block, to a temperature controller.

There are electrically driven fans in the unit which run continuously and cool the heatsinks and the electronics.

Please note:-

The minimum temperature obtainable in the block is governed by the ambient air temperature. The unit is capable of producing a block temperature of 30°C below the ambient air temperature.
PANEL LAYOUT AND FUNCTIONS

1. Temperature Controller
2. Temperature Indicator
3. Optional communications socket
4. Connections for PRT
5. Thermometer Pocket
6. Cavity
BLACK BODY BLOCK
APPENDIX 1

INDICATOR CONFIGURATION (REFERENCE ONLY)

Config.INST

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>unit</td>
<td>Instrument Units</td>
<td>°C (0)</td>
</tr>
<tr>
<td>dEcP</td>
<td>Decimal Places in Display</td>
<td>NN.NN</td>
</tr>
<tr>
<td>CtrL</td>
<td>Control Type</td>
<td>PID (0)</td>
</tr>
<tr>
<td>Act</td>
<td>Control Action</td>
<td>REV (0)</td>
</tr>
<tr>
<td>COOL</td>
<td>Cooling Type</td>
<td>LIN (0)</td>
</tr>
<tr>
<td>PwrF</td>
<td>Power Feedback Enable</td>
<td>OFF (0)</td>
</tr>
<tr>
<td>Pdtr</td>
<td>Manual/Auto Transfer PD Control</td>
<td>NO (0)</td>
</tr>
<tr>
<td>FoP</td>
<td>Forced Output Enable</td>
<td>NO (0)</td>
</tr>
<tr>
<td>Sbrt</td>
<td>Sensor Break Type</td>
<td>SB.OP (0)</td>
</tr>
<tr>
<td>rnGH</td>
<td>Process Value High Limit</td>
<td>670</td>
</tr>
<tr>
<td>rnGL</td>
<td>Process Value Low Limit</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Config.IP

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>inPt</td>
<td>Linearisation Type</td>
<td>RTD</td>
</tr>
<tr>
<td>CJC</td>
<td>CJC Type</td>
<td>(EXT)</td>
</tr>
<tr>
<td>imP</td>
<td>Sensor break impedance</td>
<td>AUTO (1)</td>
</tr>
</tbody>
</table>

Config.CAL

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCAL</td>
<td>User Calibration Enable</td>
<td>YES (1)</td>
</tr>
<tr>
<td>Pnt1</td>
<td>User Cal Point 1</td>
<td>0</td>
</tr>
<tr>
<td>Pnt5</td>
<td>User Cal Point 5</td>
<td>-99.00</td>
</tr>
<tr>
<td>OFS1</td>
<td>User Cal Offset 1</td>
<td>0.00</td>
</tr>
<tr>
<td>Pnt2</td>
<td>User Cal Point 2</td>
<td>-99</td>
</tr>
<tr>
<td>OFS2</td>
<td>User Cal Offset 2</td>
<td>0.00</td>
</tr>
<tr>
<td>Pnt3</td>
<td>User Cal Point 3</td>
<td>-99</td>
</tr>
<tr>
<td>OFS3</td>
<td>User Cal Offset 3</td>
<td>0.00</td>
</tr>
<tr>
<td>Pnt4</td>
<td>User Cal Point 4</td>
<td>-99.00</td>
</tr>
<tr>
<td>OFS4</td>
<td>User Cal Offset 4</td>
<td>0.00</td>
</tr>
<tr>
<td>OFS5</td>
<td>User Cal Offset 5</td>
<td>-99.00</td>
</tr>
</tbody>
</table>

Note: User Cal values are unique to each instrument. If available set values to those from calibration certificate.
Config.AL

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL_1</td>
<td>Alarm 1 Type</td>
<td>OFF (0)</td>
</tr>
<tr>
<td>Latch1</td>
<td>Alarm 1 Latching</td>
<td>NO (0)</td>
</tr>
<tr>
<td>AL_2</td>
<td>Alarm 2 Type</td>
<td>OFF (0)</td>
</tr>
<tr>
<td>Latch2</td>
<td>Alarm 2 Latching</td>
<td>NO (0)</td>
</tr>
<tr>
<td>AL_3</td>
<td>Alarm 3 Type</td>
<td>OFF (0)</td>
</tr>
<tr>
<td>Latch3</td>
<td>Alarm 3 Latching</td>
<td>NO (0)</td>
</tr>
<tr>
<td>AL_4</td>
<td>Alarm 4 Type</td>
<td>OFF (0)</td>
</tr>
<tr>
<td>Latch4</td>
<td>Alarm 4 Latching</td>
<td>NO (0)</td>
</tr>
</tbody>
</table>

Config.HA

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>Module Identity</td>
<td>CMS (7)</td>
</tr>
<tr>
<td>Func</td>
<td>Module Function</td>
<td>CMS (65)</td>
</tr>
<tr>
<td>bAud</td>
<td>Baud Rate</td>
<td>9600 (0)</td>
</tr>
<tr>
<td>Prty</td>
<td>Comms Parity</td>
<td>NONE (0)</td>
</tr>
<tr>
<td>rES</td>
<td>Comms Resolution</td>
<td>FUL (0)</td>
</tr>
</tbody>
</table>

Config.1A

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>Module Identity</td>
<td>LOG (3)</td>
</tr>
<tr>
<td>Func</td>
<td>Module function</td>
<td>NONE (0)</td>
</tr>
<tr>
<td>SEnS</td>
<td>Sense of Output</td>
<td>NOR (0)</td>
</tr>
</tbody>
</table>

Config.2A

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>Module Identity</td>
<td>LOG (3)</td>
</tr>
<tr>
<td>Func</td>
<td>Module function</td>
<td>NONE (0)</td>
</tr>
<tr>
<td>SEnS</td>
<td>Sense of Output</td>
<td>NOR (0)</td>
</tr>
</tbody>
</table>